Your Results | Global Average | |
---|---|---|
Questions | 5 | 5 |
Correct | 0 | 2.57 |
Score | 0% | 51% |
What is \( 6 \)\( \sqrt{75} \) + \( 3 \)\( \sqrt{3} \)
9\( \sqrt{3} \) | |
33\( \sqrt{3} \) | |
18\( \sqrt{225} \) | |
18\( \sqrt{25} \) |
To add these radicals together their radicands must be the same:
6\( \sqrt{75} \) + 3\( \sqrt{3} \)
6\( \sqrt{25 \times 3} \) + 3\( \sqrt{3} \)
6\( \sqrt{5^2 \times 3} \) + 3\( \sqrt{3} \)
(6)(5)\( \sqrt{3} \) + 3\( \sqrt{3} \)
30\( \sqrt{3} \) + 3\( \sqrt{3} \)
Now that the radicands are identical, you can add them together:
30\( \sqrt{3} \) + 3\( \sqrt{3} \)What is \( \frac{12\sqrt{10}}{6\sqrt{5}} \)?
2 \( \sqrt{\frac{1}{2}} \) | |
2 \( \sqrt{2} \) | |
\(\frac{1}{2}\) \( \sqrt{2} \) | |
\(\frac{1}{2}\) \( \sqrt{\frac{1}{2}} \) |
To divide terms with radicals, divide the coefficients and radicands separately:
\( \frac{12\sqrt{10}}{6\sqrt{5}} \)
\( \frac{12}{6} \) \( \sqrt{\frac{10}{5}} \)
2 \( \sqrt{2} \)
What is \( 3 \)\( \sqrt{20} \) - \( 7 \)\( \sqrt{5} \)
21\( \sqrt{5} \) | |
21\( \sqrt{20} \) | |
-1\( \sqrt{5} \) | |
-4\( \sqrt{5} \) |
To subtract these radicals together their radicands must be the same:
3\( \sqrt{20} \) - 7\( \sqrt{5} \)
3\( \sqrt{4 \times 5} \) - 7\( \sqrt{5} \)
3\( \sqrt{2^2 \times 5} \) - 7\( \sqrt{5} \)
(3)(2)\( \sqrt{5} \) - 7\( \sqrt{5} \)
6\( \sqrt{5} \) - 7\( \sqrt{5} \)
Now that the radicands are identical, you can subtract them:
6\( \sqrt{5} \) - 7\( \sqrt{5} \)What is 7\( \sqrt{5} \) x 4\( \sqrt{5} \)?
28\( \sqrt{5} \) | |
140 | |
11\( \sqrt{5} \) | |
28\( \sqrt{10} \) |
To multiply terms with radicals, multiply the coefficients and radicands separately:
7\( \sqrt{5} \) x 4\( \sqrt{5} \)
(7 x 4)\( \sqrt{5 \times 5} \)
28\( \sqrt{25} \)
Now we need to simplify the radical:
28\( \sqrt{25} \)
28\( \sqrt{5^2} \)
(28)(5)
140
What is \( \sqrt{\frac{64}{49}} \)?
1\(\frac{1}{7}\) | |
3\(\frac{1}{2}\) | |
4 | |
\(\frac{1}{2}\) |
To take the square root of a fraction, break the fraction into two separate roots then calculate the square root of the numerator and denominator separately:
\( \sqrt{\frac{64}{49}} \)
\( \frac{\sqrt{64}}{\sqrt{49}} \)
\( \frac{\sqrt{8^2}}{\sqrt{7^2}} \)
\( \frac{8}{7} \)
1\(\frac{1}{7}\)