ASVAB Arithmetic Reasoning Operations on Radicals Practice Test 474714 Results

Your Results Global Average
Questions 5 5
Correct 0 2.57
Score 0% 51%

Review

1

What is \( 6 \)\( \sqrt{75} \) + \( 3 \)\( \sqrt{3} \)

35% Answer Correctly
9\( \sqrt{3} \)
33\( \sqrt{3} \)
18\( \sqrt{225} \)
18\( \sqrt{25} \)

Solution

To add these radicals together their radicands must be the same:

6\( \sqrt{75} \) + 3\( \sqrt{3} \)
6\( \sqrt{25 \times 3} \) + 3\( \sqrt{3} \)
6\( \sqrt{5^2 \times 3} \) + 3\( \sqrt{3} \)
(6)(5)\( \sqrt{3} \) + 3\( \sqrt{3} \)
30\( \sqrt{3} \) + 3\( \sqrt{3} \)

Now that the radicands are identical, you can add them together:

30\( \sqrt{3} \) + 3\( \sqrt{3} \)
(30 + 3)\( \sqrt{3} \)
33\( \sqrt{3} \)


2

What is \( \frac{12\sqrt{10}}{6\sqrt{5}} \)?

72% Answer Correctly
2 \( \sqrt{\frac{1}{2}} \)
2 \( \sqrt{2} \)
\(\frac{1}{2}\) \( \sqrt{2} \)
\(\frac{1}{2}\) \( \sqrt{\frac{1}{2}} \)

Solution

To divide terms with radicals, divide the coefficients and radicands separately:

\( \frac{12\sqrt{10}}{6\sqrt{5}} \)
\( \frac{12}{6} \) \( \sqrt{\frac{10}{5}} \)
2 \( \sqrt{2} \)


3

What is \( 3 \)\( \sqrt{20} \) - \( 7 \)\( \sqrt{5} \)

39% Answer Correctly
21\( \sqrt{5} \)
21\( \sqrt{20} \)
-1\( \sqrt{5} \)
-4\( \sqrt{5} \)

Solution

To subtract these radicals together their radicands must be the same:

3\( \sqrt{20} \) - 7\( \sqrt{5} \)
3\( \sqrt{4 \times 5} \) - 7\( \sqrt{5} \)
3\( \sqrt{2^2 \times 5} \) - 7\( \sqrt{5} \)
(3)(2)\( \sqrt{5} \) - 7\( \sqrt{5} \)
6\( \sqrt{5} \) - 7\( \sqrt{5} \)

Now that the radicands are identical, you can subtract them:

6\( \sqrt{5} \) - 7\( \sqrt{5} \)
(6 - 7)\( \sqrt{5} \)
-1\( \sqrt{5} \)


4

What is 7\( \sqrt{5} \) x 4\( \sqrt{5} \)?

41% Answer Correctly
28\( \sqrt{5} \)
140
11\( \sqrt{5} \)
28\( \sqrt{10} \)

Solution

To multiply terms with radicals, multiply the coefficients and radicands separately:

7\( \sqrt{5} \) x 4\( \sqrt{5} \)
(7 x 4)\( \sqrt{5 \times 5} \)
28\( \sqrt{25} \)

Now we need to simplify the radical:

28\( \sqrt{25} \)
28\( \sqrt{5^2} \)
(28)(5)
140


5

What is \( \sqrt{\frac{64}{49}} \)?

71% Answer Correctly
1\(\frac{1}{7}\)
3\(\frac{1}{2}\)
4
\(\frac{1}{2}\)

Solution

To take the square root of a fraction, break the fraction into two separate roots then calculate the square root of the numerator and denominator separately:

\( \sqrt{\frac{64}{49}} \)
\( \frac{\sqrt{64}}{\sqrt{49}} \)
\( \frac{\sqrt{8^2}}{\sqrt{7^2}} \)
\( \frac{8}{7} \)
1\(\frac{1}{7}\)